¢ @
Q REPORT NO. ER-81-23836 3

AIRCRAFT TARGET VIEW DETERMINATION FOR
METHOD OF MOMENTS IDENTIFICATION

© GEORGE A, IDANNIDIS

' ARIE BERMAN

' CHARLES P. DOLAN

' ADVANCED PROGRAMS DIVISION
RADAR S8YSTEMS GROUP

HUGHES AIRCRAFT COMPANY

EL SEGUNDO. CA 90245

JUNE 1981

i AR o el AN sl A A b i

FINAL REPORT FOR PERIOD OCTOBER 1930 - JUNE 1981

=

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIM!TED

Submitted to:

OFFICE OF NAVAL RESEARCH
DTIC

ARLINGTON, VA 22217
ELECTL

RADAR 8YSTEMS GROUF

[ L L L L L ) -

\{UGHES | »)




IUNCLASSIFIED
SECURITY CLASSIFICATION OF THik PAGE (When Deots Enfered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

T REFORT NUMBER 2. GOVT ACCESSION NO,

ADALe3

4

3, !!jl’l"d?" CATALOG NUMBER

¥§3

Department of the Navy A

T Lo SUBTITET o —mm e e = VP OF NERTNT T WEV: JU-covenED
.AIRCRAFT TARGET VIEW DETERMINATION \ Fin-\ Repowt . ,
' FOR METHOD OF MOMENTS IDENTIFICATION || Oct<3980 June LALIEY
SO ot st et e .-;""‘:‘:’. Fi1.41-23-836 /

7. AUTWOR(E) . o oo {‘PH}\O/&MN;;———
.George A, }loannidis j e thd
Arie/Berman] Charles P, IDolan | . O L,/ N30ﬁ14w83 9‘0949

T R ERFORMING OROAN ST ON N AM E AND ADDRETE =T ::ggvgwoz't.‘zsir’?“m TIECT VAW
Hughes Aircraft Co., Advanced Programs ’, f)\> -
Division, Radar Systems Group ,,,_f,.,.... ;

2000 Fast Imperial Hwy, E] Segundo, CA 90245 .1 ‘ il

1. CONTROLLING OFFICE NAME AND ADDRESS 4 1 a/Y DA
Office of Naval Resecarch / 1, ) fune ﬁg}

. OF PACES

Office of Naval Research
Arlington, VA

800 N, Quincy Street, Arlington, VA 22217 81
T4, MONITORING AGENCY MHAME & ADDRESS(/! different from Controlling Ollice} 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
The. DECL ASSIFICATION DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release:

distribution UNLIMITED

-
b

UNLIMITED

. DISTRIBUTION STATEMENT (of the sbstract entered in Block 20, If different from Report)

6. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveras side il necessary and identily by block number)

ISAR, NCTR, Target Classification, Radar Ima

ge Recognition

0\ ABSTRACYT (Continue on reverae side |l necesssr - and Identify by block number)

structural,

this investigation the Hughes Aircraft Company studied the use of
ryntactic and statistical pattern recognition techniques for
the automatic determination of target view in ISAR images of aircraft
targets to be used in the automatic classification of these targets.,

AN

\,
N
“

DD , 52:“;3 1473

EDITION OF 1 NOV 83 IS ONSOLETE

UNCLASSIFIED

SECUR!TY CLASSIFICATION OF THiS PAGE (Whon Deate Entored)

Y

/’ \_) ;o

e

unt




g CONTENTS
1.0 INTRODUCTION AND SUMMARY . ... ..o vt v . i
3 2.0 RADAR IMAGE CLASSIFICATION USING THE METHOD
OF MOMENT S . i it ittt e e it et e o s s 16 l
,':;} 2.1 Geometric Moments and Invariant Moment Functions 3
o Of IMages . o v v o v v vt v v e e - 16
g 2.2 Computation of Target Aspect Usmg the Geometnc 3
‘;“' Maments . . . . . - . L ) LN ] . L] . . 1] . 9 LI LI} . ] . . . LI ] . ]9
3.0 RADAR IMAGE SEGMENTATION USING CLUSTERING, , ... 23
i 4,0 A SYNTACTIC APPROACH TO VIEW DETERMINATION, . ., 32 i
t 4.1 Syntactic Analysis of RATSCAT Images . . ..+ .. ... 32 "
§' 4,1,1 Testsand Results ... ... ... 37
g 4,2 Syniactic Analysis of NOSC Data, , ... .. ...+ ... 40 }
. b /
b 5,0 AIRCRAFT VIEW DETERMINATION BY MATCHING WITH i
é::: l:% "COMMON R‘EGIONS” . . 4 LI LA ] L I ) . L] L] . L] LI ) LI LI ) LI [ 3 LI L] 45 §
b 5,1  Algorithm Description and Results . .. oo 0o v .. 45 ]
5,1,1 'The Basic Procedure .. ... .uv o0 vo o0 s 45 :
5.1,2 Forming the Composite Image . ....... ... 45 g
5.1,3 Generalized Hard Limiting, . « . « v+ v ¢ v v v v 47
5.1.4 The Similarity Measure. . . « v . v v v v v v v v v 48 1
5,1.5 Training and Testing, . . v v v v v v v v v v v e uv s 49
i
6.0 THE STRUCTURAL APPROACH TO VIEW DETERMINAT ON 51 '
601 AtomsOI.0.'.‘...‘,llllllﬂll|.lll0100l 52
6.2 Models for View Determination, . « v v v v v v v v v v v 0 s 54
- 6.3 Rules for Cluster Labelling . o« . v v v v v v v v v v v v s . 56 1
3 6.3.1 Fuselage Formation ., ... ...... ... coee e 56 ]
3 6,3.2 Wing Location ... ... 57 1
6.3.3 Unbound Cluster Labellmg ...... e e 58 )
1 6.3.4 Engine Detection . . .. ..o v v e v 59
" 6.4 Decision Algorithm ., , . . . o v v v v v o v v v 60 Z
b 6.4.1 Wing Orientation . ... .. e 60 4
“, ) 6.4.2 Angleofsymmetfy....a.-........ T ) 61
; . 6.4.3 Balance Factor . .. . v v v v v v o v o o us s e o 62
6.4.4 DBoolean Features..... ... Ve e e . 62
= 6.4.5 Classification Rule, , ... ... et e e 63
% x . 6.5 Summary of Classification Results . ., ... .. .. .. .. 63 _
i
" }

!'
X
3
-\




CONTENTS (Continued)

7.0 VIEW DETERMINATION USING MOMENTS — A
STATISTICAL PATTERN RECOGNITION APPROACH ..... 68 3

8.0 CONCLUSIONS vt vt ot e vt ot e s ot oo st ooy 73 . ;
900 REFERENCESIQDD!Q'QO‘.O.COUII!‘0"00'!0'!'. 74 ;
b

APPENDIX -~ SYNTACTIC PATTERN RECOCNITION , .. ... 75 i

E

k|

Acaession FJr_ 4

DTIS TAB
Unannoneoed
Justificoation .

By.....
__'.Dif'.t:‘ibntion/ ] D I ‘( :

Avadlability (odes AN C:-Tk: o
T Avodl and/or A S _ ‘x-.x;:
Diut $peeilalk > AUG 21 1981 -

L )
I}" '

CNT1S  CRASI )'(_w
[
[

it

e A D b . e rin —im LDt 1 i1 1 oA ot sl il M St Tt e v ot M

i H
!

s [

3

E

3

3

;

iv




AR et ARG Tk s A o i DS T s LA S AW AT LI s

LIST OF ILLUSTRATIONS

Figure 3
1 Plan Views of F-102 for 0.5 Meter Resolution ., ..... 3 ;
2 Plar Views of F-192 Tail Aspect, F-15 40 Degrees 3
from the Nose, F-16 10 Degrees frorn the Nose, F-5E i
Tail, A-10 30 Degrees from the Nose, A-10 40 Degrees B
from the Nose (0. 5 meter resolution) ., ... ..., ..... §
3 Profiles of RATSCAT Targets . .. v v v v v v 00000 v s as 5 g
4 Plan Views of a 727, a DC-=10and @ 70T, v v v v v v v v s . 4 6 5
5 Plan Views of a Dc-lo [ . . . 0 s 8 0 LI ) L B ) . . LI | LI L] L) s 0 7 i
6 ProfilesofDC-lOandF-5E.................... 8 ,'
7 707 Top Vie\,',s . ’ . L] L] * . L . L] . * . LN LI LI . . . . 4 . . LI 9 i
. 8 Pr°£i1es of 707 L] . . LI L] LI I L] L ¢ b L . . LI LI I . . L . 10 ji
9 Top Views and Profiles of 727 o v v v v v v vs v v v v v v il *j
%'; 10 TOp VieWS and profiles Of A3l L O T T R R B R I O B T ) 12 '\V“
11 Classification of Plan Views of Aircraft Radar Images §
Using Moments L[] . + . L] L] ] . . . . . L] . L] L] . . . * L] . + . . 1] L] L ZO ii
12 Computation of Fuselage Orientation by Fitting Ellipse to
Target Image L[] .. . ‘ + L] + L] L] LN 1 4 [ L] LI ) ¢ 0 LI L] - . L] L . 0 . & 21 ‘
13 Aspect Angle Error Distribution Over All Aspccts for %
the Five RATSCAT Targets (Plan Views) , . . ... .. ... 22 F
14 Top and Side View Cluster Decornposition, . ., .. ... .. 29 ;
15 Ideal Top-View Graph. v v v v v v v v vt i vttt e e oo 40 ]
16 Results of Pure Minimal Spanning Tree Algorithm (Left) %
and Final Modified Algorithm (Right) . . ... ... ... .. 4] i
17 Graphs Formed from Top Views (Top and Side Views g

(Bottom) L LI 1] L] L] * L I ) . . . L LI L ) . LI ) LI 1 LI ) LI LI ] 42

18 Composites for Tail Aspecte from Images of F-102,

F"ls‘ F-léandF~5EAiTCl‘aﬁ‘....-.......-.....- 47 ;
19 Generalized Hard-Limiting Function . . . . .. ...+ .. .. 47 3
20 Examples of Graph Theoretic Clustering on the (F-5E) ]
Image ContoOuUr . . o v v v v s v s 0 v s s s s s s o s 0 0 s o o o s 53
\ 21 MOdelBof&DC-lo....-..................... 54 }
E 22 DC-i0 at Angle Somiewhere Between Side and Top View, . 55 i
. 4
E} 23 Radar "mage ol a DC-10 Classified as Ambiguous by 1
3 thQCIabqifie'J‘oofv-o-nn-cv-otoono-.c-oo.... 55 f




Figure

24
25
26
27
28

29
30
31
32

33
34

35
36

37

38

39

LIST OF ILLUSTRATIONS (Continued)

Path from Nose to Tail Clusters . .. .. ... 4.0+
Example of Locating Wing Clusters ... .. ...
Results of Labelling . . v . v v v o v vt 0 v o v o0 oo a o
Wing and Fuselage Shown as Vectors in a Plane, ., ...

The Angle Between the Line Between the Wings and the
Fuselage Was Also Used as a Feature . . . . v+ ¢ s 4 4

Distances Measured to Compute the Balance Factor, .
Successful Labeling of DC-10 Top View . .« « v v v v 4
DC-IOSideVieWB L S D R T T R 5 0 0 & & 8 o 6 3 * 6 s 0

727 Image (Top View with Almost Perfect Features:
Balance, Wing Orientation, and Symmetry). + v ¢ ¢+ . .

727Sideviewsoonooltobo.ooclulocll.‘lo‘

Rewnults of Labeling 707 Top Views (Show the Need for
Improving the Engine Detection Scheme), . , .. .. ...

Side View of 707 Which Matches the Prototype Exactly

View Determination Using Moments Computed After
Cluster Decomposition of Radar Images of the Five
RATSCAT Targets (F-102, F-15, F-16, F-5E, A-10)
Using Separate Training and Testing Sets., . .. .. ...

View Determination Followed by Classification Using
Moments Computed After Cluster Decomposition
Separate Training and Testing Sets . . + « v v ¢« v v v o 4

Classifications of a Combined Set of Top and Side View
Images Using Moments After Cluster Decomposition ,

View Determination Followed by Classification Using
Invariants Computed After Cluster Decomposition
(Training and Testing are the Same, Nose and Tail

Agpect Images are Mixed) . . . . ... ... .. 00

vi

6l
62
64
64

65
65

66
67

68

70

71

72

nd




TR RIS L

g

LIST OF TABLES

o

Table
. 1 Radar Images of Aircraft Targets Generated for
Thisst\ldy.o.o...on..-----.-noou.oc-
2 Relation of Parameter Values, Target View, and
Grammar Name o4 o o o v v v 0 v o s 0 e 6 60 0 000
3 Number of Successes and Failures of the View
Determination for Each View . . v . 0 v v v v 60 o o s
4 Determined Vievs . . v v o v o o 6 0 6 0 0 o0 0 s s 0o 0

[liits o p AN S

vii

Page

i~

38

50

T g s o i

gr—

kg st

T R e i St e 72 e kit

i e b eme




FOREWORD

Aircraft Company, Radar Systems Group, El Segundo, CA, to test the usc of
pattern recognition techniques for determining the target view in ISAR images
of aircraft targets. Top and side view images of aircraft targets were used
to test the techniques developed during this study, The tests included auto-
matic view determination followed by classification using the method of
moments.,

The investigation was performed by the Signal Exploitation Programs
Office of Hughes Radar Systems Group, for the Office of Naval Research,
Arlington, VA, under Contract N00014-80-C -0940,

Dr. George A. loannidis served as the Hughes project manager,
Commander Roger Nichols was the program manager for the Office of Naval
Research, Arlington, VA,

This final report is submitted in accordance with the data require-
ments of Exhibit A, dated 25 September 1980, Sequence AU02 of the Contract
Data Requirements List 1423,

The authors acknowledge the support and contributions of Messrs,
James Crosby, Manager, and Calvin Boerman, Assistant Manager of

Signal Exploitation Programs at Hughes.
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This report is a description of an invéstigation conducted by the Hughes
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1.0 INTRODUCTION AND SUMMARY

This report contains the results of an ONR sponsored study by the

e e kI B 1 7 A e P b e e s s ol o oS /)

Hughes Aircraft Company to determine the target view (top or side) pre-
sented by ISAR radar images of aircraft targets. The knowledge of target
view is then utilized by algorithms for automatic target recogniticn, using
the Method of Moments. ‘
The aircraft radar images used in this investigation were generated
by the application of the ISAR technique to turntable radar data and also
data obtained from flying aircraft targets. The turntable data had been
obtained at the RATSCAT facility under the AFAL E-3A Non-Cooperative
Data Collection program and consist of X-band measurements against
1/3 scale models of an F-102, an F-5E, an A-10, an F-.l15 and a YF-16,
The stepped frequency technique was used to collect the data;
256 3,4 MHz frequency steps were used to synthesize an 870.4 MHz band-
width, For the full scale targets, these measurements correspond to S=band
. data at 256 MHz bandwidth, The targets were placed on a rotary platform
that rotated at 0, 2 degree increments between adjacent bursts of the 256
frequency steps. Plan view images were obtained by positioning the target

T S

horizontally on the platform. Profiles were obtained by positioning the
target vertically (the wings extending along the normal to the platform),

In addition to the RATSCAT data, measurements on a flying DC-10, a 727,
a 707 and an A-3 were used to form radar images. These data were obtained
by an S-band radar operated by the Naval Ocean Systems Center (NOSC) in
San Diego. By stepping the transmitter {requency pulse-to-pulse at 1,08
MHz increments over 256 pulses, this radar has an effective bandwidth of
276.5 MHz,

The aspects, resolutions and view of the images formed using the
above data are given in Table 1. Examples of the best images from the above
targets are shown in Figures 1 through 10,

During the study, algorithms (nsing structural, syntactic and statis-
tical pattern recognition techniques) to determine the target view in ISAR

. images of aircraft were investigated, All the techniques were based uon a

]
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TABLE 1,

GENERATED FOR THIS STUDY

RADAR IMAGES OF AIRCRAFT TARGETS

Number of
Images per Resolution,
Data View Target Aspects meters

RATSCA T Plan 12 0.8-79, 3,8-10°, 6.8- 0.6

130. o ¢ 0 33. 8-400
RATSCAT Plan - 12 140, 8-147°, 143, 8- 0.6

1500, LI B ] 1730 8'1800
RATSCAT Profile 6 -180.0 to°173. 8°, -177 0.6

tO ‘1701 80, . ¢ o -165

to "1580 8 .
RATSCAT Profile 12 -2l to -14, 8%, -18 to 0.6

-11‘ Bo, 3 . [ 12 tO

16. Z
RATSCAT Profile 6 15868-1650, . . 161, 8- 0.6

168 Vo 173.8 to

180. 0 '
NOSC (DC-10)] Plan 10 Broadside 0.
NOSC (DC-10}| Profile 9 Nose 0.
NOSC (707) Plan 12 Broadside 0.
NOSC (707) Profile 6 Nose 0.
NOSC (727) Plan 15 Broadside 0.
NOSC (727) Profile 3 Nose 0.
NOSC (A3) Plan 12 Broadside 0.
NOSC (A3) Profile 8 Nose 0.

*RATSCAT Targets: F-102, F-5E, F-15, YF-16, A-10
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" a DC-10 and a 707

Figure 4. Plzqy views of a |
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segmentation of the radar images using clustering. Since most radar images
of aircraft targets consist cf a collection of bright spots that correspond to
strong scattering cent-rs surrounded by low intensity regions, clustering
tends to identify the location of thc major scatterers,

In the syntactic schernes {nvestigated, the cluster decomposition of
radar images was used to construct a tree graph structure with clusters as
nodes, These connected graphs or trees then were translated into strings of
symbols that characterized the relative .irection of a branch at a given
node as described in detail in Section 4. 0. An effort was made to identify
the occurrence of symbols or symbol groupings that were characteristic of
a view, For example, for a cross-like tree structure the symbol D was
assigned to the node at the center of the cross., At the start of the investi-
gation, it was thought that top views would result in such structures because
of the wing extent, However, the profiles obtained using the RATSCAT data
were often of very poor quality, and cross range sidelobes often produced

a wing~like horizontal extent of the target similar to that observed on top
views., Also as a result of the sidelobes, a horizontal branch at the location
of the vertical stabilizer was often present ir. both top and side views, Since
no unique distinguishing feature was identified when the RATSCAT targets
were used, probabilities were assigned as to the occurrence of symbols and
groups of symbols for each view, The relative position of symbols and the
probabllity for a glven grouping were described by a set of rules similar to
the grammatical rules that describe the relative position of words in a
sentence. Then a syntactic analysis was used to decide whether a glven string
of symbols satisfied the rules of the topor side view grammar, Since both
grammars contained the same rules but with different probabilities assigned
to their use, the syntactic analysis of the string resulted in a probability
estimate for the class membership of the string. Then strings v;'ere classi-
fied according to the class with the higheat probability, The best view deter-
mination results obtained with this technique were 75 percent correct. Using
a similar technique on a few images of the DC-10, 727 and 707 from the NOSC
data set, an 89 percent success rate was ohtained.

During the investigation of syntactic claasification schemes, an effort

was made to identify parts of the image that tend to recur in one view or the
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other. As a result of this effort, a technique that uses recurring regions of
the image was developed. In this technique, top and side view composite
images are formed from top and side views of similar targets in the training
set, Then a distance measure is defined between an image and the composite.
With this measure, images are classified by a nearest neighbor decision rule
as top or side views, Testsusing the RATCAT targets indicated that a 90 per-
cent success rate could be achieved with this approach, which is described

in Section 5.

A rule based structural approach to view determination was 2ldo
investigated, and algorithms were developed to simulate a simple human-
like interpretation of a radar image, This technique was tested using images
of a DC-10, o 727 and a 707 from the NOSC radar data, A total of 54 irnages,
37 top views and 17 side viciwvs, were used to test the algorithm., The classi-
fier gave the correct ansvwoyr in 53 out of 54 cases; one side view cf the
DC-10 was clascified as arnbiguous.

Using the geometric moments (computed after cluster decomposition
of the image), a Gaussian classifier was used to determine the view and
classify the targets, The view determination performance of this statistical
pattern recognition scheme applied to the RATSCAT targets was 78 percent
correct for tail aspects and 85 percent correct for nose aspects. Target
classification combined with view determination gave 71 percent correct
clussification for nose aspects and 80 percent correct for tail aspects for
images classified as top views, For images classified as profiles, the
correspoanding results were 57 and 60 percent. A test was also performed
to test classification without view determination using the RATSCAT
targets. Classification was performed for a 10-class problem: F-102 top
and side, F-15 top and side, F«16 top and side, F-5E top and side, A-10 top
and side. The results were 44 percent correct for nose aspects and 38 per-
cent correct for tail aspects.

These results indicate that for the RATSCAT targets, some common
features do exist among the top views of all the targets that are different from
similar features for side views, In general, the results of this investigation
show that if the quality of radar imsges is good, view determination is possci-
ble and tends to improve classification.

14
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Section 2 contains a summary of radar image classification using the
method of moments. Racdar image segmentation using clustering is discussed
in Section 3. A syntactic approach to view determination is described in
Section 4. Section 5 presents a view deterinination scheme using pattern
matching. 3uction 6 is a discussiun of a structural approach to view determi-
nation. Section 7 contains the statistical approach to view determination and
classification using moments. Conclusions are given in Section 8.
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¢.0 RADAR IMAGE CLASSIFICATIOIl USING
THE METHOD OF MOMENTS

One of the more difficult problems in the design of a recognition
system for pictorial patterns is the selection of a set of appropriate numeri-
cal attributes or features to be extracted from the object of interest for clas-
sification, The set of peometric moments of the image and invariant functions
of these moments has been applied successfully to the recognition of optical
pictures. [1], [2]), [3] The geometric moments and invariant moment func-
tions and their use in classifying radar images of targets are detailed in this

section.

2.1 GEOMETRIC MOMENTS AND INVARIANT MOMENT FUNCTIONS OF
IMAGES

The non central (p + q)th order moments of an NxM rectangular image

field i‘(xi, yj) are defined vy

N M
= et P
= j=

where (xi, yj) are the coordinates of the (i, j) cell and f(xi, yj) is the intensity

function.
Th e central moments for the samne rectangular image field are defined

by
N M
1 — —
Mg * TN O > tix,, yy) x RP (y, 30 (2)
i=1 j:l
where:
n
% o= =2 (3)
00
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The ncrmalized central moments are defined by

and are invariant with respect to changes in the image intensity.

Central

moments as used in this discussion are the normalized central moments

defined above.

Frorn Equation (2), the central moments are invariant under transla-

tion but vary under rotations of the image.

Using the theory of algebraic

invariants, Hu [2] has shown that algebraic relations exist amceng the centraj

moments of an image that are invariant under translation and rotation.

- p(

and are invariant under coordinate transformations.

m , m
P191] P2492

p * 0

These invariant moment functicns are of the form

)

™9

In particular, a set of

invariants known as orthogonal invariants are functions whose value does not

change under a rotation of coordinates, i.e., they are invariant with respect

to the orthogonal transformation

x! cos@ s8in® X
= {5)
y' -8in® cosB y
for any angle 6, i.e.,
m' m' e m' = (m ces M
o1y’ Ppaay’ Pndy ™pa;” Py’
17
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where the m  are computed using the iniage intensity field f(x, y) and the
ml"i‘li are cmxl‘xpluted from f(x', y'). When these functions are invariant under
rotations and/or reflections ab at one of the coordinate axes, they are called
absolute orthogonal invariants. In this dicussion 'invariants' are thrse
absolute orthogonal invariants.

Using the theory of ulgebraic invariants, Hu [2] has shown that the
number of invariants involving moments {rom se zond to nth order (n = p + q)

are the same as the number of moments with ord:rs 2 ton, which is

N = ntd4)(n-1)

In optical and infrared inage recognition systems, only invariant functions
obtained from the secrnd and third order mements are usually used, For
these moments, the six absolute orthogonal invariants are given by

1/2 .

Po = lgg *Hgy) " =1 | (6)
1 2 2
Py = =5 [lugg = Kop!™ +41y7] (7)
r
=-1-[( - 30,08 + (3 .' )2] (8)
Py : Hig " "My2 H21 " ko3
1 2 2
Py = ;-5[(“30 + )t (g ¥ Hgy) ] (9)

= —L_ " 2 2
Pa " 12 L(b3g=3ky ) uggti g { (kg gt myp )™ =3y <1y )}

(10)
) 2 2
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Above Pir Pps ceev Py have been normalized by powers of r to remove the
effect of uniform scale changes., Because the quality of most radar images

is not.good compared to optical or FLIR images, the number of moments

and invariants used in the classification of radar images [4] > much larger
than six, In particular, all invariant functions involving central moments

up to order n =7 (i.e., a total of 33) were used in radar image classifica-
tion tests performed in our earlier work in this area [4]. In these classifica-
tion tests, all the above invariants as well as smaller subsets of these

invariants were used to construct feature vectors., Classification results

from these tests [4¢] are presented in Figure 11.

2.2 COMPUTATION OF TARGET ASTECT USING THE GEOMETRIC
MOMENTS
.If the rotationally invariant moment functions are used as features
for classification, the target orientatisn in the image plane does not have to
be corhputed. However, if that orientation is desired so that other recogni-
tion techniques, which need that information, can also be applied, the central
moments can be used to give the target orientation as thown in Figure 12,

Figure 12 also shaws that if an ecllipse is fit to the aircraft image, the orienta-

tion of the major axis, which usually coincides with the fuselage, can be

obtained from (see Hu [3])
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Figure 11. Classification of plan views of aircraft radsr images using moments.
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Figure 12. Computation of fuselage orientation by fitting ellipse to target image.

"2

(Hzg = Ho2)’ ()

tan 26 =

where 6 is the angle of this axis with the horizontal (x-axis).

In the previous Hughes study [4] the performance of the above formula
in eatiniating the target aspect angle was tested by using the images of the
five RATSCAT targets. The results are presented in Figure 13 in the form
of a histogra:rn that plots frequency of occurrence versus error in orientation
angle estimate. A total of 36 images per target covering aspect angles from

0 degrees (nose on) to 180 degrees (tail) were used in constructing the plot

in Figure 13.
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3.0 RADAR IMAGT. QEGMENTA TION USING CLUSTERING
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Radar images of aircraft targets gen~rah; consist of & collection of
bright spots surrounded by low intensity regions, The po-.t‘qns of these spots
coirespond to the locations of strong scatterers on the target. Thu. » decom-
position of radar irages into segments consisting of groups of neighboring
bright spots can be used to identify the major radar scatterers on an aircraft
target, Such a decomposition can be obtained using the ISODATA clustering
scheme developed by Ball and Hall [5, 6], In outline form the essential steps

of the algorithm are

1. Selectinitial center estimates,

2. Assign every sample to the cluster whose center is closest, using
the current estimates of the centers, ™

3, Compute new centers for each cluster and compute the "within.
group variability' (i, e., the sum of the covariances of each com-
ponent of the sample vectors for that group),

4, Split the average center of each group found in Step (2) into two
centers if the within-group variability exceeds a threshold 6.,
which is set by the operator. The group is eplit by forming !‘Ewo
new cluster centers from the original, The new centers are
identical to the original, except for that component having highest
variability, which is given the values X+A andx - A where x i
the mean value for that component and A is some offset typically
A =0, This results in the ''birth" of a new cluster.

5, Regroup the samples using the new cluster points, and then again
find the cluster centers for each group.

6. Compute inter-class distances between all pairs of cluster centers,
7. Combine groups whose distances apart are less than a threshold
e_.
c

8. Iterate the procedure until no changes occur.

As seen from this brief description the ISODATA algorithm is a merg-
ing and splitting process which iterates over the image several times before
coming up with the final set of clusters. In the original report [6] the assump-
tion was made that if the algorithm was allowed to iterate enough times then

it would converge to a stable set of clusters.

“The meaning of close depends on the data and the values of the
parameters.
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However, use of the algorithm on radar images of aircraft targets
showed that the algorithm did not converge to a stable set of clusters, To
improve the convergence properties of the algorithm, when used with radar
images, considerable extensions were made during this study in such areas
as finding optimal clusters of a 2-dimensional radar image and criteria for
convergence of the clustering algorithm. In particular a criterion was intro-
duced to determine when the merging and splitting process should be stopped
and a new set of criteria was introduced to control which clusters should be
split and which clusters should be merged. This revised version of ISODATA
has better converpence properties when used on radar images and in the
majority of cases tried during this invest'gation it correctly identified the
major scattering centers on the target. In what follows there ix 2 brief

~-description of the criteria introduced tc contro) the merging and splitting

provess of the ISODATA algorithm.,

""'he criteria were derived from the scatter matrices used in multiple
dilcrimlr}}“.:ﬁ analysis. Tor each cluster the coordinates of the cluster center
and the within: ~luster scatter matrix were defined as follows

Mg (k) (14)
Moo (I
M., (k)
. 1
Yo = . (15)
00
where ;‘-k and ;k are the coordinates of the cioster center and
2
Mo (k) My (k) Mg k) Mo (k) Mg (k)
]
S, = " MR (16)
‘ M,, (k) M., (k) Moo M, (k) M, (k) M, 2 (k)
11 02 10 01l . 01

is the within-cluster scatter matrix
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where:

Ny

Mo (0 = D VA,
i=]
Ny

Mg (k) = D VA X (18)
{=z1
Ny

Moy (k) = D VALY (19)
i=1
Ny

2

M,y (k) = VA, X, (20)
i=1
Ny

2

Mg, () = > VA Y (21)
i=1
Ny

My (k) = Z VA; %, Y, (22)
izl

A, is the intensity of the ith pixel in the kth cluster and N, is ‘ne total

number of pixels in the cluster.
Using the above, the total within cluster scatter matrix is defined by

NC

Sy * 2 5, (23)
k=1
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and the between clusters scatter matrix given by

N

C

Sp = > Myt | | [ =D F- )] (24)
k=l (e = ¥)

where N is the total number of clusters and X and y are the coordinates of the
center ol gravity of the entire data set defined by equations similar to Equa-
tions (14) and (15), Using the above definitions a clustering fidelity criterion
is introduced (see also [7]) based on the ratio of between- to within-cluster
scatter measures given by

e L e e e T

J = tx'(SB)/tr(Sw). (25)

where tr(+) indicates the tr- ce (surn of the diagonal elements) of a matrix,

it

Since,

Ry

tr(SB) + tr(Sw) & tr(ST) = constant

™

where ST is the total scatter matrix of the data the fidelity criterion of
Equation (2%5) can be modified to ]

te(S-) y
(J41) = e (26)

tr(Sw) i

This criterion was used to control the merging and splitting process of the
ISODATA algorithm until the ratio of Equation (26) approached a predeter-
mined value. Experimentation with aircraft radar images showed that J = 7

gave clusters which were consistently in agreement to those formed by ,
human observers. i
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i During execution of the algorithm tr(Sw) was continuously updated
¥ using
P
c 2 2
M (k) + M (k)
= 10 01
= 00
k=1
, , where Nc is the number of clusters. If clusters k1 and k, are merged the »
resulting change in tv(Sy) is given by P

2 2 2 2
Mo (k) + Moy~ (ky) My~ (k) + My

+
My (k) My (k)

iy

Atr(Sw) =

T T nr oo
-

(Mig (k) + Myg () ® (Mo, () + My (ky))°

Moo (k) + Mpq tkp) Moo (ky) + Mgy (ks
g Using the ubove equations two clusters are merged if their centers :
i are closer than a preset distance and if the value of )
(S) |
. tr
— )
trSw) - 7 5
i
decreases as a result of merging. b
H
; ;_ The criterion fcr splitting clusters was based on the RMS extent of :
E ) the cluster and on a prediction of the value of the ratio in Equation (26). ?
t The predicted value of the ratio in Equation (26) was obtained using an ’
estimate of the change in tr(Sw) as a result of splitting given by q
L '1
where j
S j
- d = RMS extant '
2
b
4
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The above criteria were used to control the merging and splitting

process in ISODATA. The process stops wnen

tr(S

tr(Sw) -

is minimum,

Examples of cluster decomposition of airlcraft radar images are

shown in Figure 14.
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4.0 A SYNTACTIC APPROACH TO VIEW DETERMINATION

It was anticipated that top views and side views could be distinguished '
by noting the prominent presence of wing-like structures on a top view, and
of atail-like structure on profiles. Furthermore, the presence of such ‘
structures should be easily determined from a simple graph representation
of the'given image, as follows:

The graph would consist of nodes which represent clusters of "bright

points' in the image, obtained by ISODATA or by other clustering methods.

?J Such clusters tend to represent the major scattering centers on the target,
“ Some of the nodes are then connected by "edges' so as to form a graph, The
T graph is to be formed in such a way that a good prototypical top view would
L have two edges extending in opposite directions from a ''main stem', forming

b a tree-graph in the shape of a cross. The two extending edges, supposedly
representing wings, should indicate a top view. Such a cross structure lends

itself to a simple syntactic representation,

With this kind of approach in mind, the images were processed,

& thresholded, and clustered, and a graph or tree was formed.
’g Two distinct sets of data were available for uset RATSCAT data,
F which provided a systematic set of top views and side views from known '

aspect angles, obtained from controlled rotation of each target on a rotary

2t i O Dmmm LI T Ll

platform, and NOSC data, which p ivided data of thr. target in actual flight,
The RATSCAT data provided image arrays with less detail and resolution
than the NOSC data, and also appeared to be of poorer quality in general,

R T T AT o

We will discuss the syntactic view determination work done with the 1
RATSCAT data, and then with the NOSC data, noting that the work with NOSC

data was more promising and therefore was developed further, !

4.1 SYNTACTIC ANALYSIS OF RATSCAT IMAGES

For the RATSCAT images, the graph tree was formed by using the

G e I TR AR T I RRGG cemai RTT

"minimal spanning tree'' for the given nodes or clusters. Some alternative
distance measures were used in forming the (minimal spanning) trees, and
3 some spurious small clusters were removed in accordance with an adaptive

threshold criterion.
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These graphs or trees were then translated into strings, in a manner to
be described later., From these strings of the top views, top view grammars

were constructed, and from strings of profiles, side view or profile grammars

s R i

were constructed., These grammars are then syntactic descriptions of their
. respective views,
A minimal spanning tree is defined as follows [see Meisel 8]:

A spanning tree of a connected graph G is a tree in G which contains

ARG

every node of G, The weight of a tree is the sum of the weights of its edges.
(Typically, the weight of an edge is its ler 7th, which is the distance between
the nodes of the edge.)

A minimal spanning tree is the spanning tree of minimal weight.

In forming the minimal spanning trees, two alternative weight or
dista.ice measures were used. The first is the usual Euclidean distance

metric

d =Jiax)? + (ay)2

it i 5

The second weight is based on the ratio of the between-ciuster variance to

the sum of the within-cluster rariances and is given by

W = Mool M 13) " % 3
i oo i oo j ;
* 3
) where Moo(k) is the sum of the intensities of the pixels in the kth cluster,
d'2 is the square of the distance between the two cluster centers and 7
] |
i
2 2 2 :
o =g o
X, .
J i

RRTITNTR A R FTE

are the characteristic sizes (orthogonal variance components) of the jth

cluster.
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The transformation of tree to string was designed to yield a symbol D

for a simplistic ""wing-like' distribution of clusters, as illustrated by

OO 00

graph string (CCDC)

The other two symbols, A and B, arise when the graph has an edge

to only one side or the other of the "main'' vertical path, e.g.,

C
A
C
C

i — B

e

graph string (CACCBC)

The C represents edges or segments of the main stem.

In an attempt to use the presence of D, and even the presence of an

;. ACB or BCA which somehow "approximates' a D, as an indication of "wings"'
as seen on a top view, the first target (the F-102) was studied and revealed
higher frequencies of D, ACB, and BCA in the side views. This occurred
even after some editing of clusters in an attempt to remove spurious clusters

which could mislead to the formation cf a D as well as other symbols. We do

L e i

not propose to use the mere presence of D, ACB, or BCA since the intuitive
inclination is not supported by empirical indications.

l; In general, the top and side views of the RATSCAT targets, as
processed to date, do not appear clearly distinguishable, Therefore we

decided to try simple statistical grammars which use the frequency of
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occurrence of each svmbol in each position to distinguish the two views, and
see what success rate can be obtained with these grammars,
The transformation of tree to string and the grammars used in the

classification are
Transformation of Tree to String:

Select the vertically highest node

2. Subdivide the image plane into three angular sectors, as shown
below, used in assigning symbols to branches of the tree graphs

3. Translate tree into string by making the following assignments,
shown here for the single selected node:

BRANCH ORIENTATION SYMBOL BRANCH ORIENTATION §YMBOL
0° o°
| |
] |
7 N\ 1\
N\ / (]
mo o zaso mo 135
) 0
I ;0
|
k— = 8 : 8c
7N\ 71N\
° N / o ! \J 0
o® 13s° 228 o 136
| |0
|
—>c —> oc
228° ?o 138° n:o 1380
A— =>o
7 N\
7/
225° 1\.qs°

4. Select vertically lowest non-leaf direct descendant of current
node, and remova this old current node and related vertices.
If no such descendants, output the string and stop.

5. Go to 3.
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The stochastic grammars studied here are of the following general
form (for more details on graph gramumars sce the Appendix):

X — Y 7Y, Y, =" pa/ph

X — UV Y, —* pp/B

Vi Yp YV, Yi =" pic/)®

fori = 3,40-., ne-2

— —_—
Vn--Z Yn-l’ Yn-l Yn Yi P(D/i)D

fori=1,2.,.., n

X is the start symbol, and the nonterminal symbol Y, is a position
holder for the i'th position in the string.

[Y'x—. P(A/i)A] means that the symbol A occurs in position i with
probability P(A/i) (for the given view), and so on. The grammars differ
only in these probabilities, which are readily estimated from the given sets
of strings,

A preliminary attempt was made to [ind [eatures which somewhat
distinguish the top and side views for each target separately, i.e., which
occur more frequently for one view than the other for a given target, and
which repeat their preference in the several targets.

Each 'feature' in this attempt was merely the presence of a given
symbol in a specified position in the string derived from the image., Only
two such features were found, and their bias or preference was deemed to
be arbitrary.

Another suggested distinction between top and side views was that
a top view would have basically one region of extensions from the main "stem”
representing the fuselage, and a side view would have more than one (two--

one for the wings and one for the tail).
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This feature can be expressed on the strings in terms of having at

least two non-C symbols ceparated by a string of Cs of length greater than
zero, or perhaps greater than one,

Several formal variations are possible

for expressing this feature in terms of the strings, In any case, a guick

study revealed this feature worked well for the F-102, but had a strong

reversed (negative) correlation for the F-5E (the fourth target), so that it
is not a consistent view-correlated feature.

4,1.1 Tests and Results

For the performance tests presented below the formation of the tree
structure was subject to two parameters which determined the threshold for

eliminating spurious clusters and selected the distance measure used in

forming the minimal spanning tree, In the tables summarizing the results

these two parameters are labeled FACTOR and IFUNC, The value of the

parameter FACTOR is the percent of the average cluster Intensity averaged

over all the clusters and is used as the threshold for eliminating clusters.
The value of the parameter IFUNC indicates the branch weight connecting
two clusters whichis used in the formation of the minimal spanning tree:
IFUNC =] corresponds to the euclidean distance weight between the centers
of the two clusters, while IFUNC = 2 corresponds to the weight based on the

ratio of the between-cluster variance to the sum of the within-cluster variances
for the two clusters,

For a given combination of the above two parameters the images were

clustered and transformed into tree structures, The tree structures were

then converted into strings of symbols as described above. By observing the

resulting strings rules were derived to distinguish top and side view images,
As described earlier these rules were based on the occurrence ind position

of the various symhols in the strings, The set of rules together with a set

of probabilities to be applied to each view comprised the stochastic
grammar used for the syntactic recognition of top and side view images.
Stochastic top view and side view grammars, named GRAM 1, GRAM 2, ..

GRAM 6 were derived from data obtained from 3 different choices of values

for these parameters. The parameter values, view, and each grammar are

related as indicated in Table 2.
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TABLE 2, RELATION OF PARAMETER VALUES,
TARGET VIEW, AND GRAMM AR NAME

IFUNC = 1 IFUNC -

2 IFUNC =2 2

FACTOR = 50 FACTOD = 0 FACTOR = 50
Top View GRAM 1 GRAM 3 GRAM 5
Side View . GRAM 2 GRAM 4 GRAM 6

oo

In addition, two non-stochastic grammarr ware formed:

GRAM 7 .determines presence of a D, and
GRAM 8 -determines presence of two reglons nf Aor B or D
separated by at least 2 C-,

The stochastic grammars GRAM | through GRAM 6 were tested on the
data from which they were formed. The non-stochastic grammars GRAM 7
and GRAM B were not formed from any detr, and were tested on the strings
produced with IFUNC = 2 and FACTOR = 50.

Given a string and a grammar (GRAM), the computer algorithm
determines whether the string can be in the grammar at all (i, e., parses the
string) and if so, computes a value which ordinarily represents the probabil-
ity of the most probable derivation, but which can be used as a ""'measure of
membership' in the set represented by the grammar. The view of a given
string is determined ty selecting the grammar for which the above described
mer .re is higher,

Three such tests were perfo: v ~d, one using GRAM | and GRAM 2
with the data from which they were fcrmed, the second using GRAM 3 and
GRAM 4, and the third with GRAM 5 and GRAM 6.

Finally, measures were obtained for membership in the sets repre-
sented by GRAM 7 and GRAM 8 for strings produced with IFUNC = 2,
FACTOR = 50, All the above tests were performed on strings obtained from
the first four RATSCAT targets F-102, F-15, F-16, and F-5E using six tail
aspect and six nose aspect images per target for the top views, and 12 nose
and 12 tail for the profiles.
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The results were

FOR GRAM 1| AND GRAM 2

Determined view
Top Side
Actual Top 36 12
view
Side 23 73

Overall = 75,5 percent correct

FOR GRAM 3 AND GRAM 4

Top Side
Top 28 20
Side 32 64

Overall = 6¢ percent correct

FOR GRAM 5 AND GRAM 6

Top Side
Top 34 14
Side 26 70

Overall = 72 percent vorrect

As for the two nonstochastic grammars GRAM 7 and GRAM 8 men-
tioned earlier, no significant correiation with or implication regarding target

view was noticed for either grammar individually, or in combination,
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4.2 SYNTACTIC ANALYSIS OF NOSC DATA

Since a syntactic description typically intends to describe "structure, "
specifically spacial structure, images which had no discernible ("humanly

recognizable') structure were not used, Furthermore, since the NOSC data

are real flight data, each image is not strictly a pure top view or side viev,,
8o that the view (as either a top or side view) of many images could not be
determined by any means. Some good images were obtained which seemed
amenable to syntactic analysis, and only these selected images were used.
The approach used for the RATSCAT data served as a starting point;
modifications to the graph forming algorithm were developed to make top

|

views conform, as much as possible, to a generic graph such as the one in
Figure 15, without unduly {orcing the side views to conform to the top-view

model graph,

-
i A IV s < R e R i EMEGaRE R bt 2. et L -

Y T T [
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Figurs 15. Ides! top-view graph.

3 The graph forriug is based on the minimal spanning tree algorithin,
é and the primary modi{ications involve incorporation of cluster orientation
' into the distance measure used in that algorithm. Furthermnre, this version

of the minimal spanning ¢tree algorithm was made applicable to portions of

e el e e s s N ke i e AR

the tree, leaving previously formed portions intact. '
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The result of applying this modified algorithm, as compared with
forming a simple minimal sparning tree, is illustrated in Figure ]6, using

top views of a DC-10 and a 727, Graphs formed by this algorithm are also
illustrated in Figure 17,

A e

Figure 18, Resuits of pure minimal spanning tree aigorithm {i7ft) and final modified algorithm (right).

The purpose of including orientation ir to force the tree to connect
nodes in straighter lines, For example, assuming the orientation of the
plane is known (from the flight trajectory), emphasizing this orientation in
the distance measure tends to connect the clusters along the fuselage in
the resulting tree,

Clusters presumably representing wings were determined by selecting
two "'wing-tip'' nodes - i. e., the nodes of greatest distance fromthe presumed
fuselage, ome on each side of the fuselage, finding the path (in the tree graph)
from each of these to the fuselage, determining the ''orientation'' of each
wing by computing a line of least squares fit for each wing, and using the
orientation of this line ir reforming the section of the graph tree represent-

ing the respective wing. This process results in connecting the clusters in
a straight or smoother line along each wing.
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Figure 17, Graphs formed from top views (top) and side views (bottom),

42




S a2 (LT ST —

T

3

A

1
|
5

g

G ;

1

' ]

4§

L]

i

j

¢ 707 4

( Figure 17. Graphs formed from top views (top) and side views (bottom). g
¥ if.
: ) As with the RATSCAT data, the same idea of using protrusions to :
;: [ either or both sides of @ main path is used in translating the graph to a i
- ¢ string. However, the description of these protrusions (particularly in ]

regard to which side of the main path the protrusion extends) has been
refined to accommodate cases where nodes on the main path do not line

up in a sufficiently straight line.
For these data, simply using the presence of a D (i.e., symbol

representing a ''cross,' or a protrusion extending to both sides of the main {
path) to indicate a top view yielded 89 percent success (for the selected %
4
|

NOSC images).
The successes and failures for each of the three targets are given in :

Table 3.

AT T T T A T T T 5

43




)
:
TABLE 3, NUMBER OF SUCCESSES AND FAILURES OF THE VIEW
DETERMINATION FOR EACH VIEW
Determined View Determined View “-‘
Top Side Top Side 1
Presented | Top 10 0 Top 15 0 <
View Side | 1 8 Side | 0 3 j
a) DC-10 b) |
|
Determined View
Top Side
Presented Top 11 1
View Side | 4 2 i
c) 707

Overall Corract = 89 percent
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5.0 AIRCRAFT VIEW DETERMINATION BY
MATCHING WITH "COMMON REGIONS"

In proposing a syntactic approach to view determination, it was
suggested that the grammars for each view could be constructed by using recur-
ring substructures - i.e,, parts of the images which tend to recur in one view
or the other. In this section such recurring regions of the images are used.
However, the most successful ''grammar' constructed with these is trivial with
respect to grammatical structure, and the method presented here is more
simply described without references to any grammatical constructs.

The test results for the method proposed here indicate that approximately

90 percent success can be achieved with some confidence.
5.1 ALGORITHM DESCRIPTION AND RESULTS

5.1.1 The Basic Procedure

1. Hard Limit each image from continuous grey level to x1 (+1 if
intensity is larger than the threshold and -1 if it is less),

2. !"Smooth' the image (i.e., pass through a low pass filter).

3. Form a composite image for each group of similar targets using
images over several aspect angles for each view,

4, Compute similarity measure between each composite and each
image.

5. Normalize each similarity measure to a given composite by the
maximum measure obtained for that composite in the training set.

6. Determine target view in testing set according to a ''nearest
neighbor" criteria (i. e., assign the target view of the most
similar composite).

5.1.2 Forming the Composite Image

A composite image of a set of images is formed by arithmetic addition
of the images, followed by some hard limiting on the absolute values. For

example, for two image arrays A and B normalized so that

-1 A, ) sl

and -1 = B(i,j) s 1
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a composite C is formed by

D(i,j) = A(i,j)+ B(i, 1)
Cliri) = 7oty Up(IpG )

where: U. is a step function defined by

l for x2T
UT(X) =
0 otherwise

for some selected threshold T. The hard limiting recovers an image more
similar in type to the images from which the composite was formed as shown

in the example below!

Example: j
11 1 -1 -1 11 -1 lst image i
11 -1 1 -1 -1 1 1 2nd image .
1 1 -1 =1 =1 =11 =1 3rd image \ 4
33 -1 =1 =3 -1 3 -1 Sum ‘
11 0 0-1 01 0 Composite \
é: This compnsite was formed by nard limiting the absolute values of the sum j
f array, using a threshold of 3. i
g' In this simple binary case, the composite represents the ''points' or 1
»f "positions' which are in agreement or in common to the three images; it is :
: simply an ''intersection' or 'common region' of the three images. é
f By varying the threshold, different composites can be obtained., For a ‘ ]
’5* threshold =1, the composite represents a type of hard limited "average' image. ﬁ
f A composite of top views of the F-102, F-15, F-16 and F-5E for tail ;
és aspects, and a composite of side views of the same targets are illustrated in \ Q
Figure 18. These composites were formed using a gencralized form of hard
4 limiting, as discussed below,
i .
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PLAN VIEW PROFILE VIEW

Figure 18. Composites for tail aspects from images of F-102, F-15, F-16 and F-BE aircraft.

5.1.3 Generalized Hard Limiting

The images from which the composites are formed can be binary (1),
but if any significant smoothing is done, they also have a variety of grey
levels between -1 and 1. Therefore the hard limiting is generalized to
recover an image of this type.

The generalized hard limiting is based on a powered sine function,

as illustrated in Figure 19:
Let P(x) = [sinc[(x-'I‘) ZEI']+13/2 for 0 < x < 2T.

As c approaches 0, this function approaches hard limiting (i.e., a step
function), The generalized hard limiting on the abeolute values in an array
Aliy) is given by
Ali, j)
C.j) = Ta@ p Flad N

4 GENERALIZED

> HARD LIMITED
E | vaLue
4
B
w "
Q 16n€ (X = T) gz +1112
b3
e
| - X

c T
| INPUT IMAGE INTENSITY |
Figure 19. Generalized hard-limiting function. (C=1 is illustrated.
As C approaches O, this funciion as computed in the

program RECOV approasches hard-limitting; As C
increases, a linear function is approached.)
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5. 1.4 The Similarity Measure

The basic measure of similarity between images is the ''size'' or

extent of their "intersection' or common region. Specifically, it is the sum
of the absolute values in their composite,

If we define the generalized hard limiting function G by

G(x) = -l—:-:—I-P(IxI)

(where P is as defined previously), then the similarity between two image

arrays A and B is given by

> e, j)!

all i, j

where:

C(i, j) = G(A(i, j) + B(i, j)).

However, the similarity measures computed in the basic procedure,
between an image and a composite, are normalized by the ''size'' of the
composite, where the ''size' of an image A(i, j) is given by

> 1A, )l
all i, j

Therefore the similarity between an image B and a composite A was

computed as

Zlc(i.j)l

Z‘A(i.j)l

where:

C(i, j) = G(A(,j) + B, j))

48




To compensate for a possible bias toward one view or another, a
bias factor F is introduced, and each similarity computed between an image
and a top-view composite is then multiplied by F, and the product is presented
as-the adjusted similarity value, Thus F > ] favors a determination of top

view, F <1 favors a side view determination, and F = | is neutral,

similarity * F if a top view composite was
Adjusted similarity = involved

similarity otherwise

The bias factor F is determined by actually executing the view determination

H on the training set and estimating the apparent bias toward one view or the

; other.

5.1.5 Training and Testing

The preprocessed images are divided into two groups, according to

- aspect angle; the first group with aspect angles

180°, 174°, 21°, and 15°, and the second with
177°, 171° 18°, and 12°,

The images in the first group are used for training, and those in the

second group are used for testing, as follows:

For each view and aspect angle, a composite of all four targets at that

view and angle is formed from images in the training set. Training, in our

case, consists primarily of forming these composites. The view determina-
; tion procedure can now be executed using these composites. Before executing
| the procedure on images in the testing set, the algorithm is applied to
3 images in the training set, This test is used to indicate any adjustments
? ;_I (e.g., in the bias factor F). Then the (adjusted) procedure is tested on the
: images in the testing set, A

The results obtained with this view determinaticn procedure for the
F-102, F-15, F-16 and F-5EF are summarized in Table 4,
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6.0 THE STRUCTURAL APPROACH TO VIEW DETERMINATION

The determination of target shape using structural techniques requires
that the image be decomposed into a number of parts or segments called
atoms., These atoms can be sections of the contour of the figure or regions
of bright scatterers called clusters or parts of the skeleton of the image,

A set of intrinsic labels that represent features measured directly on the
atoms is assoclated with each atom. For example when the picture atoms
consist of regions of bright scatterers (clusters) such intrinsic labels would
be the length, shape, area (size), orientation, brightness, variance of
brightnese, and coordinates in the image plane, In addition to these intrinsic
labels, a set of external labels such as the relative position of each atom
with respect to the other atoms in the image is also used.

The interpretation problem is to assign a set of identifiers, such as
wing, engine, tail, fuselage, etc, to groups of atoms. Since the relative
positions of these major aircraft components are known a priori, the inter-
pretation problem is reduced to a search for a mapping from the measured
set of atoms to the set of identifiers, which is consistent with the external
labels, For example, if one atom is labeled tail, then none of the atoms to
the rear of it could be labeled wing.

The formulation used is very similar ) what a human would use,

The algorithm picks out an easily distinguishable feature of the image such
as the fuselage clusters and then infers the labels of the remaining clusters
(atoms). This is done by labeling the remaining clusters according to their
positions with respect to the fuselage.

The structural approach works very well with ''good’' images; good
images being those which are readily interpreted by human observers. Images
which are not well formed, due to either blurring or cross range aliasing or
ingufficient target rotational motion during image formation, are not inter-
preted successfully by the algorithm as developed at present. However,
images which are half way between top and side view are handled consistently
and interpreted as ambiguous.

The algorithm coded for this project works well on images of large

swept wing aircraft uch as airliners. The extension to small delta wing
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fighters was not attempted because the amount of quality data for that class of
target did not warrant the additional effort. Images of a DC-10, a 727, and a707
from the NOSC radar were used to test the classifier, There were 54 imapges,
37 top views and 17 side views, The classifier gave the correct decision in

53 out of 54 cases; one side view of a DC-10 was classified as ambiguous.,

6.1 ATOMS

The atoms mentioned above are the lowest level of information about
the image used by the classifier. Individual pixels could be used as atoms
but this would make the problem intractable. The atoms used in the present
élgorithm are the clusters of Section 3, These clusters provide non-overlapping
regions of the image which can be used to determine the structure of the
image itself,

The cluster properties which were used are

1. (x,y), the center of the cluster

2. (sx, sy), the major and minor axes of the clusters

3, theta, the orientation of the cluster's major axis

4, npnts, the number of points from the image in the cluster

5. My, the average intensity of the points in the cluster

There was one very important assumption made about the clusters:
no two sections of the original image corresponding to different parts of the
alrcraft are contained in the same cluster, This means that the classifier
does not have to deal with the possibility that the same atom may belong to
different parts of the aircraft and therefore may have conflicting labels.

Also considered as atoms were overlapping clusters formed using
the method of [9]. Four examples of these atoms are shown in Figure 20- -d,
One of the drawbacks of this cluster decomposition, however, is the require-
ment of a good contour, which is difficult to obtain {rom radar images. Some

promising results for that problem were achieved using a method based on




a. Top view, b. Top view

O S

¢. Side view. d. Side view. j

Figure 20. Exasmpies of graph theorstic clustering on the (F-6E) image contour,
Ellipses are fitted to segments of the cuntour,

] the shape hullm of a set of points but this was too sensitiv~ to the image
threshold, ISODATA the method outlined in Section 3,0, however can be

] made relatively insensitive to the threshold.

*The shape hull of a set of pointa is the boundary curve obtained {rom the y

intersection of all convex polygons formed by circumscribing the k nearest '
; neighbors of every point with the smallest possible convex polygon; see
. also [10].
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6.2 MODELS FOR VIEW DETERMINATION

The structural approach requires models of the possible classes

against which to compare its interpretation of the image. Top and side view

models of a DC-10 are shown in Figure 21.
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a. Top view.
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? b, Side view, j
‘F" Figure 21. Models of a DC-10,
|
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{
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The mairn features which the classifier uses are the orientation of the

wings on a top view, and the height of the tail on a side view, Other features .

"considerea are the position of the wings with respect to the nose, the sym-

meiry of “he wings about the fuselage, and the lack of one or more wings on
a side view,

A DC-10 is shown in Figure 22 somewhere in between top and side
view, Y¥igure 23 shows a radar image of a DC-10 at this angle. This image

was classified as ambiguous by the classifier.

Figure 22. DC10 &t angle somewhere between side and top view.

w
!
if

t!
i

I

z uibh

Figure 23. Radar image of a DC-10 classified as ambiguous by thi classifier, (The classifier interpretation
of this image corresponds roughly to Figure 22.)
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6,3 RULES FOR CLUSTER LABELLING

The algorithm coded for this project requires a very rough estimate

of target aspect. This allows initial labeling of the frontmost cluster, which
is labelled nose, and the rearmost cluster which is labelled tail. The aspect
angle estimate can be obtained by a combination of tracking data and the

moments computed for the entire image using the formula:

tan (2%@) = -Z*p.x“/(pzo - kg (27)

as described in Section 2.

6.3.1 Fuselage Formation

The fuselage is determined by finding a set of clusters, which, when
connected, form a relatively straight path from the nose to the tail. The
path is found by tracing a path from the nose to the tail along an optimized

minimal spanning tree, The optimized tree is formed as follows:

1., Compute the minimal spanning tree,
2, Find the path from the nose to the tail along the tree.

Compute the slope of the least squares line through the
above path, and let u be the unit vector in that direction,

4, Compute the minimal spanning tree only for the points in
the original path but with a distance function between
point i and j given by

dist = sqri((xi -xj)*m2 + (yi ~yj)ii2)
(28)

+ 1, 5[ux(xi -xj, yi -yj)
This makes the branches of the tree tend towards the direction of the least

squares line., The fuselage is then traced along the resulting tree, An

example of an optimized path is shown in Figure 24,
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a. Non-Optimized b. Optimized

Figure 24, Path from nose to tail ciusters. Dotted lines show the minimal spanning tree.

6.3.2 Wing Location

After the final fuselage is obtained, another least squares line is fit

to it. This least squares line is given in point slope form as:

o R T e, T et e

, (y - y,) = blx-x)) (29) i
%I” v';
1A

5 /
T
This line divides the plane into two half planes. The discriminant ;g
f ‘ff
: d=be(x-x)+y, -y (30) ‘

gives positive values in one half and negative in the other. In this manner r}

w the clusters which are not on the fuselage are divided into two disjoint sets. ’
From these sets the wing are formed. Before the wings are formed, however,
/ the sets are pruned according to the following set of rules: i
5 K
i
let r be the radius of gyration = o, T R (31)
* (see also Equation (6)) 20 02 :
j 1. if the distance from a cluster to its closest neighbor 4
i . Ts >1.5%r then delete the cluster from the wing set. !
3 2., if a cluster is deleted from a wing set then it is attached §

x to the nearest fuselage cluster,
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After the sets have been pruned, then the wings are formed in the

following manner:

i+ compute a minimal spanning tree on the points in the s-t.

2. trace the path along that tree from the base of the wing to
the tip.

The base and the tip of the wing are defined as follows:
The base of the wing is the cluster closest to the point (Xc, Yc)

which is the point of intersection of the perpendicular through
the center of the wing set and the fuselage line. (See Figure 25)

TIP CLUSTER
\O// X, V)
O

BASE CLUSTER

FUSELAGE

o O

Figure 26. Example of locating wing clusters.

The tip is defined to be that cluster in the set which is furthest
from the fuselage line.

The wings found by the above method are then pruned and reformed to

ensure that all spurious clusters have been removed.

6.3.3 Unbound Cluster Labelling

After the formation of the fuselage and the wings, there may be atoms
which have not been given any label., These unbound clusters fall into two

categoiies, noise clusters and clusters which belong to the fuselage and wings.
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The algorithm for labeling the unbound clusters can be described by

the following four steps:

l.

4,

Use a least squares straight line {it through the fuselage clusters
of the form

(y - Yo) = a- (x-xo)

For every unbound cluster with cluster center coordinates
(x¢» yc) compute the linear discriminant functions

d = a(xc - xo) - (yC - yo)

and depending on the sigh of d assign the cluster to either the
left or the right wing.

Project the cluster center onto the fuselage, If the projections
do not lie between the nose and the tail the cluster is left
unbound, otherwise proceed to the next ster,

Compute the distance dy. from the center of the cluster under
consideration to the centroid of all the wing clusters, Also
compute its distance dj to the fuselage line. If dyw< dy, assign
the cluster to the wing; else if dy < 0.25 x (distance from nose
to tail), assign the cluster to the fuselage; otherwise, the
cluster remains unbound.,

6.3, 4 En&‘me Detection

One of the significant features of aircraft radar images is the number

and location of the engines. During this project an algorithm was developed
which identified certain clusters as engine clusters even though this informa-

tion was not used in the determination of target view, Furthermore the only

engine detection attempt that was made was to find engines on the wings

using only the relative position of engine clusters with respect to the wing

and fuselage clusters., The present algorithm can be improved by including

such internal clus‘er characteristics as density, brightness, texture and

orientations, However even without these more sophisticated detection cri-

teria the present algorithm successfully identified some of the engines on

images of a DC-10 and a 707, examples of which are shown in Figure 26,
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s, DC-10
\
/
b. 707

Figure 26. Results of labelling. (Beside each image is the line drawing
derived from the labels assigned. Stars mark the positions
of clusters designated as engines.)

6.4 DECISION ALGORITHM

Once the clusters have been labelled, clagsification as a top or side
view is a matter of choosing the right features based on geometric relations
among the aircraft parts and deciding according to these. Five features were

used to make the classification.

6.4.1 Wing Orientation

The orientation of each of the wings with respect to the fuselage was

measured by representing each part by a vector as in Figure 27 and computing,

) =cos‘1(?7\'ir‘/(l_fl | wi) (32)
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LEFT
WING

Figure 27. Wing and fuselage shown as
vectors in a plane.

Using the angle 8 for the left and right wings a parameter N, was computed

by counting the number of wings with proper orientation where proper orien-

‘tation was defined to be such that /9 <9 < n/2.

6.4.2 Angle of Symmetry

The angle of symmetry of the wings about the fuselage was also com-
puted by drawing a vector between the centers of the two wings as shown in

Figure 28 and compu.ing the angle

X, . ¥r)

pUSELACE

(XI .Yl)

Figure 28. The angle between the line between
the wings and the fuselage was also
used as a feature.
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s = 90 - (180/7)=8 133

which ranges between -90 and 90, 0 being p2rfect symmetry.

6. 4.3 Balance Factor

Thea balance of the wings about the center of the fuselage was also
used as a feature, Two distances dl and d2 were computed as shown in
Figure 29 and the balance factor b defined by

b = 2%(1/2 - dl1/d2) (34)

was computed. This factor ranges from -1 to 1, 0 being perfect balance.

\ TAIL

\«'i

e !

Figure 28. Distances messured to compute
the balance factor.

6,4.4 Boolean Features

Two binary features, w and t, describing the wings and tail were

computed as follows;

if either of the wings is missing then w = true

else w = false
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6.4,5 Classification Rule

AR YW e T TR DR T T, TR

. After the above features are computed the following rules are used to

classify each image as a top, a side, or an ambiguous view,

! if w is true the
else if Ny = 2 an
else if Ny, = 2
glse if 1s) < 30 and not t and N, > 0 then TOP
!

=}
B

g

=

else if sl < 10 an N.. >0 and
else SIDE

6.5 SUMMARY OF CLASSIFICATION RESULTS

The program for this method was tested on 54 of the images obtained
from the NOSC radar, broken down as follows:

DC-10 top views 10 images
DC-10 side views 9 images
727 top views 15 images
727 side views 3 images
707 top views 12 images
707 side views 6 images

These ''good'' images were chosen from the data available because they were

such that a human observer might be able to identify them., The structural

PRy

approach does not do well on other images because it is based on human like :
classification rules. ’

All of the 37 top views were identified by the classifier, Of the
17 side views, oniy one was declared ambiguous (see Figure 33).

Figures 30 through 37 show some examples of cluster labeling of the
ISODATA clusters, using the methods described above. These figures show

PO TRNTR I L TP SR

that although considerable success has been achieved ~ith the above methods

there is still a need to refine and improve the techniques, ;
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Figure 30. Successful labeling of DC-10 top view.
{Note the engine detection and tail formation).

Figure 31, DC-10 side views.
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Figure 32. 727 image (top view with aimost perfect features:
belance, wing orientation, and symmetry.)

fus@lage
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Figure 33. 727 side views. .
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Figure 34. Resuits of labeling 707 top views. (Show the need for improving the engine detection scheme.)
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7.0 VIEW DETERMINATION USING MOMENTS - A STATISTICAL
PATTERN RECOGNITION APPROACH

Both the syntactic and structural approach to view determination
discussed above were based on recognizing a consistent and repetitive pattern
present in either top or side view images of aircraft targets, In a statistical
pattern recognition approach a set of numerical features is computed from
the image and used to form a feature vector. A training set of feature vectors
from top and side view images is then used to construct a statistical classi-
fier. Using cluster decomposition of the aircraft radar images geometric
moments were computed by considering the center of each cluster as a point
with mass equal to the total cluster intensity. All moments with orders 2 to
6 ( a total of 25) were used to form a feature vector. Using feature vectors
from a training set of top and side view images for nose and tail aspects of
the five RATSCAT targets (F-102, F-15, F-16, F-SE and A-10) a Gaussian
classifier was constructed to recognize target view., The performance of
the classifier on the RATSCAT images is shown in Figure 36, As seen

CLASSIFIER DECISION CLASSIFIER DECISION
TOP 8IDE TOP SIDE
VIEW VIEW VIEW VIEW
5 S
rop TOP
g VIEW » 2 ga VIEW 3 7
g g
< <
8IDE 8I10E
VIEW 19 VIEW 2 2
NOSE ASPECTS TAIL ASPECTS

Figure 36. View determination using moments computed after cluster decomposition of radar imeges of
the five RATSCAT targets, (F-102, F-15, F-16, F-BE, A-10) using separate training and

testing sets.
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in this figure a 78 percent correct view determination was achieved for

nose aspects and 85 percent for tail aspects. A Gaussian classifier was

also used to classify the individual targets after view determinations using
moments computed after cluster decomposition of the radar images. The
resulting classifications performance was 71 percent correct for nose aspects
and 80 percent correct for tail aspects for images classified as top views.

For images classified as profiles by the automatic classifier, the identification
rate was 57 percent correct and 60 percent correct for nose and tail aspects
respectively, These classification results are tabulated on a per target

basis in Figure 37, A classification test was also performed on the combined
data set of top and side view images without view determinations. Instead the
classification was performed for a ten class problem: F-102 top and side,
F-15 top and side, F-16 top and side, F-5E top and side, and A-10 top and
side. The results shown in Figure 38 were 44 percent correct for nose aspects
and 38 percent correct for tail aspects. These results indicate that for the
RATSCAT targets considered above there are common features among the

top views of all the targets which are significantly different from similar
features for side views, A classification test combined with view determina-
tion was also performed on the combined data set of RATSCAT and NOSC
targets, Because the aspects for many of the NOSC targets were broadside
while those for the RATSCAT targets were nose or tail, an aspect independent
feature vector (such as the one computed from the invariant moment func-
tions) was used for this test., All imapges from each target were grouped with-
out regard to aspect. Further because the number of images from the NOSC
data was too small to allow splitting into training and testing, the same images
were used for both training and testing, All targets were treated equally for
this test by using the same RATSCAT imager for training and testing on each
target and by combining the nose and tail aspects into one aspect angle sector.
The results of this combined nine class test were 78 percent correct for thuse
images classified as top views and 70 percent correct for those images clas-

sified as side views, These results are shown in Figure 39,
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Figure 37. View determination foliowed by classitication using moments computed sfter cluster
decomposition separate training and testing sets.
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Figure 38. Classifications of a combined set of top and side view images using moments
after cluster decomposition. Data are treated as a ten class probiem for
: these tests i.e., F-102 top and side, ... A-10 top, and side.
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Figure 39. View determinstion followed by classification using invariants computed sfter cluster
decomposition (training and testing are the same, nose and tai! aspect images are mixed).
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8.0 CONCLUSIONS

Summarizing the results  ,ented in the previous sections, it can be
ohserved that in general view determination of relatively good aircraft radar
images is possible and tends to improve classification, Since this investi-
gation was primarily concerned with algorithm development, the work
concentrated on relatively 'good' images. The problem,however, is that the
majority of radar images of aircraft targets are not 'good' so that many of
the techniques discussed here may either fail completely or have their per-
formance significantly reduced.

In general the syntactic and structural techniques described here will
most likely fail completely on bad images. For example the syntactic stheme
developed here gave an 89 percent correct view determination for good images
of the DC-10, 727 and 707 but using relatively good images of the RATSCAT
targets the technique yielded a success rate which was only 25 percent better
than random guessing, The structural scheme which attempts to interpret
images in a human like manner is also very sensitive to image quality., In
principle much more elaborate rule based schemes could be attenmipted than
the one described in Section 6.0 to interpret bad or ambiguous aircraft radar
images, However, since ISAR images depend on target motion it may be
more advantageous to investigate the use of collateral tracking information
for aspect and possible view determination. The results of this investigation
also show that statistical pattern recognition schemes using moments yield
results which are at least as good as the results achieved with some of the
more elaborate syntactic and structural techniques developed during this
study. Thus it seems that until the quality of aircraf{t radar images improves
considerably, statistical pattern recognition schemes will provide the most

efficient aircraft radar image classification algorithms.
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APPENDIX

SYNTACTIC PATTRN RECOGNITION

Syntax ref- to the structure of sentences in a language as described
by a grammar. 1. grammar can be defined as a set of rules for construct-
ing (grammatically correct) senten2s. A formal grammar is defined
similarly as a finite set of rul. - {.. generating the sentences of the associated
language (a formal lan: a-> .s simply a set of sentences).

In a s, ntactic .pproach to pattern recognition, an analogy is made

between patterns in a class and sentences in a language. By analogy, each
patiern in a giv'n class is jenerated by a ''grammar’'' associated with that

class. The syntactic pattern recognition task is then

1. Tofind the grammar from a set of patterns known to be in the
classg

2. Given an unclassified pattern, check if it can be constructed
from the grammar. If so it is in the associated class.
Fo.melly, a formal grammar iz defined as a triple (X, N, T, P)
where N and T are mutually exclusive, fiaite sets rf symbols, The symbols
in N are cal ed non-terminals, and those in T arexcalled terminal symbols,
X is a symbol in N, and is called the "initial nonterminal, ' or the ''start
symbol''. P is a set of ''production rules'’, which are essentially pairs of

strings compused of symbols in }T{ U }N: Such a production rule is denoted ¢s

X — Y

where: » ard y are a pair of strings.
The productions are interpreted or used as rules for generating the

strings in {1e set represented by the given grammar. ''Application' of a
production rn’ 1

X mmr—

as above, to an arbitrary string Z consists of finding a substring of 7 identical

to :1, and replacing it with y. This foims a new siring from Z.
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A string Z, is said to be derived in one step from another string 7.0
if there is a production x — y of the grammar which, when applied to Z ,

results in Zl' This is called a one step derivation and is denoted by

1 :
ZQ$Z1 -

The notion of a derivation is then extended to any number of steps by stipulat-
ing that

7 =7

and if Z =257, and 21 = 7' then z Lkb 7, where Z, Z', and Z" are
strings of symbols in {T} U {N},

The set of strings generated by the given grammar is defined as
{Z]1Z is a string of symbols in T, and X n@z where n is any non-negative
integer and x is the start symbol.}

The concept of a grammar can be extended from strings to more
general graph structures, tree structures for example as described in [2].

Also, the production rules can be generalized to ''probabilistic'' productions,
in which a production

L S

T

denotes that x would gt replaced by y with probability p. For a more
detailed presentation of probabilistic grammars and syatactic pattcrn
recc nition see [1], [2].

Given a string and a grammar, ''parsing'' the string refers to finding
its derivation from the start symbol, in accordance with the given grammar,

To summarize, syntactic sttern recognition attempis to describe each
class ol patterns under concideration as a set generated by the same grammar:
An unclagsified pattern is wnen classified in the class or set corresponding to
the grammar in which the given pattern can be parsed successfully, or with {

the greatest probability in the case of probabilistic grammars.
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